刷题刷出新高度,偷偷领先!偷偷领先!偷偷领先! 关注我们,悄悄成为最优秀的自己!

简答题

证明函数f(x)在(0,+∞)内的可导性,并求出f(x)的表达式。已知f(xy)=f(x)+f(y),且f'(1)=1。

使用微信搜索喵呜刷题,轻松应对考试!

答案:

null

解析:

由题意知f(xy)=f(x)+f(y),我们可以令y=x得到f(x²)=2f(x),由此我们可以猜测f(x)为正比例函数。又因为已知f’(1)=1,我们可以通过求导法则求出f’(x),证明f(x)在(0,+∞)内可导。最后,通过代入法将x=y代入原函数得到f(x)=x。

创作类型:
原创

本文链接:证明函数f(x)在(0,+∞)内的可导性,并求出f(x)的表达式。已知f(xy)=f(x)+f(y)

版权声明:本站点所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明文章出处。

让学习像火箭一样快速,微信扫码,获取考试解析、体验刷题服务,开启你的学习加速器!

分享考题
share