刷题刷出新高度,偷偷领先!偷偷领先!偷偷领先! 关注我们,悄悄成为最优秀的自己!

单选题

小猫为了测试双胞胎之间是否能够真的做到心意相通,设计了一个程序,如下图所示:一人心中想着一个十以内的数,另一人猜测,共有3次猜测机会。下列哪个选项可以优化这个程序?( )

A

B

C

D

使用微信搜索喵呜刷题,轻松应对考试!

答案:

B

解析:

【喵呜刷题小喵解析】要优化测试双胞胎之间是否能心意相通的程序,我们需要考虑如何更有效地进行猜测。首先,分析题目中给出的初始程序。初始程序中,一个人心中想一个0-9的整数,另一个人有3次机会进行猜测。这个程序是基于随机猜测的,每次猜测都有1/10的概率猜对。接下来,我们分析每个选项:A. 允许猜测者询问是“大于x”还是“小于x”。这种策略允许猜测者通过二分法来缩小猜测范围,每次猜测后,猜测范围都会减半。但这种方法需要多次询问,且每次询问都需要双胞胎之间的沟通,不符合心意相通的要求。B. 允许猜测者直接猜测一个两位数。这种方法看似增加了猜测的复杂性,但实际上,由于双胞胎之间能够心意相通,猜测者可以直接猜测一个两位数,如“55”。如果双胞胎真的心意相通,那么他们可以直接知道这个数是否等于心中所想的数。这种方法只需要一次猜测,如果猜对,则证明双胞胎心意相通;如果猜错,则证明他们不能心意相通。这种方法比初始程序更有效。C. 允许猜测者询问是“奇数”还是“偶数”。这种方法虽然可以减少猜测次数,但仍然需要多次询问,且每次询问都需要双胞胎之间的沟通,不符合心意相通的要求。D. 允许猜测者询问是“大于5”还是“小于5”。这种方法类似于选项A中的二分法,但范围缩小到了5的两侧,虽然减少了猜测次数,但仍然需要多次询问,且每次询问都需要双胞胎之间的沟通,不符合心意相通的要求。综上所述,选项B允许猜测者直接猜测一个两位数,只需要一次猜测,且符合心意相通的要求,因此是最佳优化方案。
创作类型:
原创

本文链接:小猫为了测试双胞胎之间是否能够真的做到心意相通,设计了一个程序,如下图所示:一人心中想着一个十以内的

版权声明:本站点所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明文章出处。

让学习像火箭一样快速,微信扫码,获取考试解析、体验刷题服务,开启你的学习加速器!

分享考题
share