刷题刷出新高度,偷偷领先!偷偷领先!偷偷领先! 关注我们,悄悄成为最优秀的自己!

简答题

已知函数f(x)在区间[a, b]上可导,且f(a) > 0,f'(x) > 0。设S1(x)和S2(x)分别表示由曲线y = f(x)与直线y = A和y = B (A < B)所围成的两个封闭图形的面积(如图)。证明:存在唯一的ξ,使得f'(ξ) = (S1 - S2) / (b - a)。

使用微信搜索喵呜刷题,轻松应对考试!

答案:

解析:

本题主要考察了函数值的性质、连续函数的性质以及单调函数的性质。通过构建新的函数g(x),利用这些性质逐步推导出了存在唯一解ξ的结论。

创作类型:
原创

本文链接:已知函数f(x)在区间[a, b]上可导,且f(a) > 0,f'(x) > 0。设S1(x)和S2

版权声明:本站点所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明文章出处。

让学习像火箭一样快速,微信扫码,获取考试解析、体验刷题服务,开启你的学习加速器!

分享考题
share